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Abstract 
 
 
 
 

     One of the behaviours to reach studying the quantum states is to consider them 
at the boundary of clasical mechanics whereas the applicability of clasical 
mechanics theory.  

     Quantum chaos arising from semiclassical models and the classical limit of a 
quantum description may lead to a mechanical system with chaotic dynamics. 

We propose the principle to build a deformed microcavity for reseach quantum 
properties in chaos medium to elucidate the interplay between wave and particle 
natures of light. 

We have been used the deformed microcavity as a efficiency tool to study that  
chaos medium. 

We have developed a chechnique for realizing a two dimensional quadupolar 
microcavity with its deformation variable from 0% to 20 % continuosly using a 
liquid jet ejected from concircular orifice. With this technique, we investigated the 
far field evolution depending on deformation parameter from regularity to chaos. 
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Tóm tắt nội dung công trình 
 
 
 

Một trong những phương cách để đạt tới việc nghiên cứu các trạng thái lượng 
tử là xem xét chúng ở giới hạn của cơ học cổ điển  mà ở đó ta có thể áp dụng được 
lý thuyết cơ học cổ điển. 

Quantum chaos là được phát triển từ các mô hình bán cổ điển và giới hạn cổ 
điển của một mô tả lượng tử có thể dẫn tới một hệ với động học hốn loạn 

Chúng tôi đề ra nguyên lý thiết lập một hốc cộng hưởng vi mô biến dạng để 
nghiên cứu các đặc tính lượng tử trong môi trường hỗn loạn để làm sáng tỏ tác 
động lẫn nhau giữa sóng và hạt. 

Chúng tôi sử dụng hốc cộng hưởng vi mô biến dạng như là một công cụ hiệu 
quả để nghiên cứu môi trường hỗn loạn đó. 

Chúng tôi phát triển một kỹ thuật để tìm hiểu một hốc cộng hưởng vi mô biến 
dạng bốn cạnh với độ biến dạng thay đổi liên tục từ 0% đến 22% sử dụng một 
dung dịch được bơm vào từ các ống không tròn . Với kỹ thuật này, chúng tôi đã 
nghiên cứu tiến trình trường- xa phụ thuộc lên các thông số biến dạng từ sự cân 
đối đến hỗn loạn. 
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1. Quantum chaos and its questions under investigation  
 
Introduction 
 
Quantum chaos attempts a synthesis of ideas from two active research fields: 
The study of optical microcavities, and the theory of dynamical systems whose 
classical phase space is partially chaotic. For its nonclassical counterpart, the 
quantummechanics of chaotic systems, termed in short “quantum chaos”, the 
situation is completely different. Quantum chaos at first sight seems to be the 
exclusive domain of theoricians. The situation gradually changed in the middle of 
the eighties, since when numerous experiments have been performed. The 
underlying ideas are very simple. It is essentially the mathematical apparatus that 
makes things difficult and often tends to obscure the physical background. 
Therefore the philosophy adopted here is to a strong accentuation of billiard 
systems for which a large number of experiments now exist. Since the uncertainty 
relation 
 

    
1

2
x p∆ ∆ ≥ h          (1.1 )   

                                    
prevents a precise determination of the initial conditions. This can best be 
illustrated for the propagation of a point- like particle in a box with infinitely high 
walls. For obvious reasons these systems are called billiards.  
 
The billiard , though being conceptually simple, nevertheless exhibits the full 
complexity of nonlinear dynamics, including its quantum machanical aspects. 
Probably there is no essential aspect of quantum chaos which cannot be found in 
chaotic billiards. Quantum mechanics has now existed for more than 60 years and 
has probably become the best tested physical theory ever conceived. Quantum 
mechanics can handle not only the hydrogen atom which is classically integrable 
but also the classically nonintegrable helium atom. We may even ask whether there 
is anything like quantum chaos at all. The Schrodinger equation is a linear 
equation leaving no room for chaos. Today the term “quantum chaos“ is generally 
understood to comprise all problems concerning the quantum machanical behavior 
of classically chaotic systems. Quantum chaos is the study of no separable 
Schrodinger equations based on a knowledge of the underlying classical mechanics, 
which can be chaotic when the system is non-integrable. 
 
Generally, resonances are long-lived quasi-bound states in an open system that 
arise due to interference, and they give rise to sharp variation in scattering phase 
shifts, cross sections, transmission coefficients, etc., as the incident wavelength is 
varied. An open system is characterized by the existence of propagating waves at 
large distance from the region where the quasi-bound states are formed. 
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Helmholz equation in billiard experiments  

Let ( ) ( ) ( )10 0 ,.... 0Nx x x =    be the vector of the dynamical variables at the time t 

= 0. At any later time t we may write x(t) as a function of the initial conditions and 
the time as 

  ( ) ( )0 ,x t F x t =                                     (1.2) 

  If the initial conditions are infinitesimally  

  ( ) ( ) ( )1 0 0 0 ,x x ξ= +                                (1.3) 

then at a later time t the dynamical variables develop according to 

( ) ( ) ( )1 0 0 , .x t F x tξ = +                       (1.4) 

The distance ( ) ( ) ( )nt x t x tξ = −  between the two trajectories is obtained from 

Eqs.(1.2) and (1.4) in linear approximation as 

( ) ( )( ) ( )0 0 , ,t F x tξ ξ  = ∇                      (1.5) 

Written in components Eq. (1.5) reads 

( ) ( )0 .n
n m

n m

F
t

x
ξ ξ∂=

∂∑                           (1.6) 

The eigenvalues of the matrix ( )/n mM F x= ∂ ∂  determine the stability properties of 

the trajectory. If the module of all eigenvalues are smaller then one, the trajectory 
is stable, and all deviations from the initial trajectory will rapidly approach zero. If 
the modulus of at least one eigenvalue is larger than one, both trajectory will 
exponentially depart from each other even for infinitesimally small initial 
deviations. 

Stationary solutions of the Schrodinger equation are obtained by separating the 
time dependence, 

( ) ( ), .niw t
n nx t x eψ ψ=                               (1.7) 

  we have 

( ) ( )2 0n nk xψ∆ + =                                  (1.8) 
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where nω  and nk  are connected via the dispersion relation  

2

2n nk
m

ω = h
                                            (1.9) 

Equation (1.8) is also obtained if we start with the wave equation 

2

2 2

1
0,

c t
ψ ∂∆ − = ∂ 

                                 (1.10) 

where c is the wave velocity, and  if we separate again the time dependence by 
means of the ansatz (1.7). In contrast to the quadratic dispersion relation (1.9) for 
the quantum mechanical case we now have the linear relation 

n nckω =                                                 (1.11) 

between nω  and nk . It is exactly this correspondence between the stationary 
Schrodinger equation and the stationary wave equation, also called the Helmholz 
equation, which has been used in many billiard experiments to study quantum 
chaotic problems using wave analogue systems. 
 

    Integrable systems  
 

           We have learnt that random matrix theory is perfectly able to explain the 
universal properties of the spectra of chaotic systems. On the one hand it is very 
satisfactory that one single theory can cope with such a variety of systems as 
nuclei , mesoscopic structures, or microwave billiards, on the other hand this is a 
bit disappointing. If there is no possibility of discriminating between the spectra of 
a nucleus and a quantum dot , then there is little hope of learning anything of 
relevance about it. 
Fortunately, random matrix theory is only one side of the coin. The spectral level 
dynamics where bouncing balls disturbed the otherwise universal Gaussian 
velocity distribution. Another example is the scarring phenomenon observed in 
many wave functions. Here obviously closed classical orbits have left their 
fingerprints in the amplitude patterns. We cannot expect that the universal random 
matrix theory can correctly account for individual features such as periodic orbits. 
 
As we know from the correspondence principle, in the semiclassical limit of high 
quantum numbers. We have already discussed this connection for a particle in a 
one- dimensional box. The general case has been treated by M.Gutzwiller [17,18]. 
In there have two part : Trace formula, establishing a correspondence between the 
quantum mechanical spectrum and the periodic orbits of a system and a number of 
applications of the trace formula will be examined.  
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In most isolated mechanical systems occurring in nature, the only conserved 
quantity is the total energy. As soon as there is more than one degree of freedom, it 
becomes very difficult to solve the equations of motion under these circumstances. 
Practically all textbook examples for motion in more than one dimension 
therefore belong to a special class of systems which axe called integrable because 
the trajectory can be found by a set of quadratures. 
 
Assume that in addition to the Hamiltonian H, let found another function K(x¯ ) of 
the phase space variables that is also conserved, i.e. {K, H} = 0. The system is 
integrable if there are N conserved quantities like H and K which are also pair 
wise independent and have vanishing Poisson bracket with each other. Let explore 
this situation for the special case of N = 2. Independence of H and K means that 
we require their gradients to be linearly independent, 
 

x xH Kα
→ →

∇ ≠ ∇       (1.12 ) 

 
every where except at isolated points in the four-dimensional phase space. The 
trajectory is constrained by the two equations H{x}=E and K{x}=const, and 
therefore lies on a 2D surface F. Any point on that surface can serve as the initial 
condition for a unique trajectory consistent with the conservation laws, and the 

resulting set of trajectories defines a new vector field: the projection of 
d

x
dt

− 
 
 

onto 

the local tangent plane of F. This 2D field covers the whole surface, and it is 

nonzero everywhere provided 
d

x
dt

− 
 
 

≠ 0. The latter condition is assumed to be valid 

in the cases of interest here, as is done the textbook by Arnol'd [19] 
 
In order for F to be covered by an everywhere nonvanishing vector field, its 
topology must be that of a torus. One can easily visualize that a sphere does not 
admit such a field . In fact this topology introducing further handles on the torus 
will again make it impossible to avoid points of vanishing field. 
The generalization of the above arguments to more than two degrees of freedom 
is that the trajectory will move on an N-dimensional torus in the 2N-dimensional 
phase space. However, the case N = 2 is of particular interest to us. 
Concerning the assumption that the vector field on F is nonvanishing, it should 
be pointed out that there are counter-examples, namely the rational polygon 
billiards [20], which consist of flat billiards bounded by straight line segments 
enclosing an angle which is a rational multiple of π. These systems are called 
pseudo-integrable, and the motion of a trajectory is confined to a two-
dimensional manifold in phase space. However, the possibility of (classical) 
"beam splitting" at sharp corners implies that singularities of the above vector 
field can occur. As a result, the surface F is a multi-handled sphere, which 
becomes so complicated that the system shows some properties commonly 
associated with nonintegrable dynamics, as for example level repulsion in the 
quantum mechanical spectrum. 
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            The long lifetime of photons in a laser resonator is what makes it possible 
to obtain coherent stimulated emission. The sharply peaked wavelength-dependent 
transmission of a Fabry - Perot interferometer is the basis of high resolution 
spectroscopy. The characteristic wavelengths λ at which resonances occur, as well 
as their lifetimes τ, are device-specific. In optics, one uses the Q factor as a figure 
of merit for the resonator, where Q ≡ω τ, ω≡ ΠC/Λ 
When there exist as many conservation laws as there are degrees of freedom, a 
system is called integrable. The complexity of the problem is greatly increased in 
non-integrable systems, where it becomes impossible to reduce the wave equation 
to a collection of separate first-order differential equations. Meanwhile in optics, 
a theory of nonintegrable resonators only existed in the form of perturbation 
approaches [1] where the breaking of symmetries was treated in the limit where 
it causes only a small correction to the symmetric solutions. 

 

 
 

Figure 1.1. Integrable shapes (left) in two and three dimensions and their 
non-integrable deformed counterparts [2] 

 
 
It has recently been realized [2] that nonperturbative effects may in fact be 
useful in device applications, and one therefore desires models that could make 
predictions and provide explanations for phenomena observed in strongly non-
separable wave equations. 

     Classical ray dynamics 
 
The ray dynamics analysis is facilitated by the axial symmetry of the droplets which 
implies (in the language of particle trajectories) that the z component of angular 
momentum, Lz is conserved. At any given Lz and total energy E, the equations of 
motion thus have only two degrees of freedom, just as in the deformed cylinder. This 
becomes explicit in cylindrical coordinates ρ, φ, z where one has 

2 2 2

2

1

2 2
zL

E m z
m

ρ
ρ

• • 
= + + 

 
          ( 1.13) 
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Let us look at the dynamics projected into the 2D (p, z) coordinate system.  

Each specula reflection causes a discontinuous change in ρ
•

 and z
•

; however the 

angular velocity φ
•

 remains unchanged because the normal to the surface of an 
axisymmetric cavity is always perpendicular to the Φ direction. Thus a 3D specula 

reflection simply reverses the normal component of the 2D projected velocity , zρ
• • 

 
 

  

and reflections are also specula in the projected coordinates. Reflections occur 
whenever the trajectory ρ(z) intersects the boundary curve ρb(z). Between 

reflections the particle motion is free, z
•

 = const, and Eq. (1.13) can be integrated to 
find ρ(t). It can be shown that ρ2(z) describes a parabola whose vertex is the point of 
closest approach to the z-axis and whose intersections with the squared boundary 
curve ρb

2(z) are the collision points. The curved trajectories in the z-ρ-plane 
between specula bounces are to be contrasted with the straight paths in conventional 
2D billiards where the centrifugal potential L2

z /(2mρ2) is absent.  
 
The resulting dynamics introduced dimensionless variables in Eq. (1.13) by setting    
E = 1/2 and m = 1. Then one has 
 

2 2 2

2
1 zL

zρ
ρ

• •
= + +   (1.14) 

 
where 0 ≤ Lz ≤ ρb(zmax) is the maximum distance from the z-axis is ρb(zmax).  To     
simplify notation , assume that the droplets have their widest transverse cross-section 
in the equatorial plane, i.e. zmax =0. Again the escape condition is simply sinχ < sinχc 
where sinχ is the angle of incidence with respect to the surface normal n at the 
reflection point. This is not the same as the normal angle in the ρ - z-plane, as can 
be seen by considering a trajectory reflecting entirely in the equatorial plane at 
nonzero sinχ ; its apparent angle of incidence in the ρ — z-plane will be zero. The 
angle in the p — z-plane is then given by 
 

 
2 2cos cos /z zρχ χ ρ • •= +   (1.15) 

 
It is convenient in the plotting of Poincare sections to use as variables the polar 
angle θ and the 3D sinχ at each reflection since in these coordinates the escape 
condition is still satisfied along a horizontal straight line. 
At nonzero Lz certain regions of the SOS are forbidden due to the Lz angular 
momentum barrier (e.g. a ray reaching the pole (θ = 0) must have Lz =0). For the 
allowed bounce coordinates θ, sinχ one finds the inequality sinχ > Lz/ρb(z(θ)), 
where z(θ) =τb(θ) sinθ.  Before discussing ray escape in the deformed droplets it is 
important to note that as we proceed from higher to lower Lz in addition to the 
excluded regions of the SOS decreasing (because the angular momentum barrier   
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becomes weaker) the degree of chaos grows rapidly. There is actually no visible chaos 
and a mostly chaotic SOS for Lz = 0  for a droplet of fixed deformation. The reason for 
this is that high Lz trajectories are confined near the equator and a cross-section of the 
droplet at the equator is perfectly circular, i.e. high Lz orbits see an effective 
deformation which is much weaker than polar orbits (Lz = 0) which travel in the most 
deformed cross- section of the droplet. The effective deformation 
 

( )2 21 / 0eff z bLε ε ρ= −             (1.16) 

 
and tends to zero at the maximum allowed value of Lz. Thus as long as ε is large 
enough to induce classical Q-spoiling for the Lz = 0 orbits of interest, by looking at 
different Lz values for a fixed deformation one can study the classical Q- spoiling 
transition in a single ARC.  
Note that there is an absolute minimum allowed sinχ = sinχm which occurs at the 
equator (θ = π/2) where ρb is maximal (i.e., sin χm = Lz/ ρb (0)). This implies that 
classical ray escape is entirely forbidden due to the angular momentum barrier for 
values of Lz > ρb (0) sinχc . As just noted these high LZ modes are confined to orbits 
near the plane of the equator ; since classical escape is forbidden for these modes we 
always expect to find high-Q WG modes in the equatorial region of axially-symmetric 
deformed microspheres. Since this follows simply from Lz conservation it will be true 
in both the oblate and prolate shapes. 
Proceeding now to lower Lz, we see that the angular momentum barrier has 
weakened enough that the allowed region of the SOS passes through sinχc and rays 
with this value of Lz can escape. However as before WG modes will be associated 
with rays starting at large sinχ ≈ 0.9 in this case. These rays are unable to reach 
sinχc due to remaining KAM curves. 
Therefore high Q WG modes for this value of Lz as well. This situation persists all 
the way to Lz = 0 for deformations less than roughly 5% of the radius, so little Q-
spoiling and approximately isotropic emission for smaller deformations than this. 
However for the 50% deformation used reducing Lz a little more causes the appearance 
of regions of chaos which extend from high sinχ across sinχc  allowing classical Q-
spoiling of the WG modes. All modes with Lz less than this value to have their Q 
rapidly degraded. As the Q of these modes decreases it will fall below the threshold 
Q-value to support lasing and these modes will go dark. But these low L~ modes are 
the only ones which can emit from the polar regions because of the angular 
momentum barrier for the high Lz modes. Therefore the model explains naturally why 
the polar regions are dark while the droplet still lasers. The low Lz modes which 
could emit from the poles have too low Q to laser and the high Q modes which 
support lasing are confined away from the polar regions. This argument holds for 
both the oblate and prelates deformations in agreement with observations. 
 
The question of why the emission profiles are nonetheless so different in prelates 
versus oblate shapes. To answer this question look at where the stable islands which 
block chaotic escape occur for the two types of deformations. The prelates shape 
corresponds to a stretching of the droplet in the vertical direction and a compression 
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in the equatorial plane. Because it is compressed in the equatorial plane there exists a 
large stable island at θ = Π/2 corresponding to the two-bounce diametric orbit of the 
type we discussed in the 2D case .  
 
Ray trajectories 

           The problems with the proper definition of the term “quantum chaos“ have 
their origin in the concept of the trajectory , which completely loses its significance 
in quantum mechanics. Only in the semiclassical region do the trajectories eventually 
reappear, an aspect of immense significance in the context of semiclassical system 
with N dynamical variables x1, x2,…xN under the influence of an interaction. 
Typically the xN comprise all components of the positions and the moment of the 
particles. Consequently the number of dynamical variables is N = 6M for three 
dimensional M particle system. 

This straightforward generalization of arguments from the circle allows us to define 
the decay time as an average over an ensemble of trajectories on the adiabatic 
curve pm,p, of the time t needed by each orbit to escape. For each orbit, the escape 
time t can be obtained from a Monte-Carlo simulation, following the classical 
trajectory and producing at each collision with the boundary a random number 
between 0 and 1; if the latter is larger than po, escape occurs.  

 
 

Figure 1.2. Ray trajectories for circle (a), and quadruple-deformed circle (b) 
parameterized by( ) 1 cos 2r φ ε φ= +  in polar coordinates for є = 0.08 corresponding 

to an 8% fractional deformation. Rays are launched from the boundary at the same Φ 
and angle of incidence sin χ0 = 0.7 in both cases; ray escape by refraction occurs in 
case (b)[21] 

The path length. L of the ray up to this event is related to the escape time by      
L = ct/n, and the decay time is 

nL

c
τ =                ( 1.17) 

where the average over different trajectories on the adiabatic curve (denoted by the 
angular brackets) is necessary because sinχ is a function of position Φ along this 
curve, so the starting conditions are in equivalent. 
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           The model thus defined suffers from the approximation that coherence 
of any kind is not taken into account. This includes the possibility of coherence 
between successive tunneling events, because the simulation is purely sequential. 
It also includes the fact that the internal evolution of sinχ (or m) does not 
necessarily follow the classical dynamics, e.g. as a consequence of dynamical 
localization. The only wave effect that is contained in the simulation is direct 
tunneling through the instantaneous effective potential barrier as derived from 
the angle of incidence. 

 

 

 

Figure 1.3. The starting condition for the ray escape simulation is given by the 
adiabatic invariant curve pm,q- If tunneling and above-barrier (Fresnel) reflection are 
neglected, the classical escape condition is that the trajectory cross the line sinχc 
= 1/n. This defines a billiard with an escape window in phase space that must be 
reached by classical time evolution. This window is smeared out when the above 
wave effects are included.[21] 
 
The first of Poincare's integral invariants 
 

C

pdq∫�     ( 1.18 ) 

where C is the q-space projection of any closed curve in phase space, and all 
pi and q, are evaluated at a the same time t.  

The quantity in Eq. (1.18 ) is independent of t, even though C will change with t 
according to the equations of motion. To show the invariance of Eq. (1.18), 
consider each term p.dqi  in the scalar product p.dq separately and apply the 
integration. 
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It occurs when a ray starting on the adiabatic curve belonging to a WG mode 
diffuses downward in sinχc until the condition for total internal reflection 

1
sin

n
χ >            (1.19 ) 

is violated. The real-space picture of this process was illustrated in Fig.1.2, and 
the location of starting and escape conditions in the Poincare section is shown in 
Fig.1.3. As an implication of this argument, it is precisely the deviation of the 
trajectory from the adiabatic curve due to phase-space diffusion that determines 
the resonance lifetimes at high deformations. This does not constitute a 
contradiction to the validity of the semiclassical quantization provided the escape 
times due to classical diffusion are still long enough to permit the adiabatic curve 
to yield an accurate semiclassical quantization. As a minimal criterion, this calls 
for at least one revolution around the boundary along the adiabatic curve 

 
Multimode lasing 
 
Lasing requires a gain medium and a cavity. The gain medium provides 
amplification of a light wave traveling in the cavity, depending on the pump 
power P supplied to it. When P exceeds the lasing threshold Pt , the gain exceeds 
the losses due to absorption, leakage from the cavity etc. Consider a given cavity 
mode with a loss rate 1/τ and a number N of photons in it. In the limit of a clean 
resonator, τ  is just the resonance lifetime.  
 
To maintain a steady-state laser action, the escape of photons from the cavity must 
be compensated precisely by the stimulated emission into the same mode. The 
latter is proportional to the number Ni of inverted atoms (or molecules) that 
interact with the mode, and to the intensity of the existing field. Therefore, can 
write the stationary condition as 
 

0 i

dN N
BN N

dt τ
= = −  ( 1.20 ) 

 
where B is the Einstein coefficient for induced emission.  
 
 
After canceling N we are left with 
 

1
iN

Bτ

=               ( 1.21 ) 

 

which is independent of the pump power. The requirement of steady state therefore 
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implies that the inversion N  is clamped to a constant value as soon as P exceeds Pt. 
For the cavities of interest here, one has to assume that many modes have spatial 
overlap with the gain medium, although their respective τ may vary widely.  
 
After the first mode starts to laser, we could stop increasing P and would thus 
obtain a single-mode laser. If P grows further, the original mode continues to 
laser with the same Ni as at threshold (P = Pt), but other modes may also satisfy 
the lasing condition that their modal loss be made up for by their modal gain. This 
is possible if the spatial overlap of the original mode and the new mode is incomplete, 
so that one has nodes where the other has antinodes. Since the interaction with the 
gain medium is suppressed in the neighborhood of field nodes, two such modes can 
interact with different atoms. The result is that the second mode can indeed laser, 
producing its own collection of inverted atoms N’ i. Let the threshold for this 
second mode be P't . Its loss is larger than that of the first mode τ’< τ , corresponding 
to P’t > Pt. The interesting observation here is that according to 
  
N’ i > Ni (  1.22  ) 
 
If we add the fact that the amount of pump energy converted into lasing emission grows 
with the inversion, this leads to the statement that the lowest-r losing mode carries the 
largest emission energy. The same can be said in the presence of more than two 
lasing modes. 
The lasing spectra obtained from liquid spheres and jets containing a dye do 
indeed show multimode operation. While the longest-lived regular WG states are 
always among the lasing modes, one can now see how the emission directionality 
should be dominated by those states whose lifetime is long enough to meet the 
lasing condition but shortened due to classical escape. 
It is then only a matter of achieving the required refractive index before dynamical 
eclipsing should be seen experimentally. In the absence of a suitable liquid for this 
purpose, a more immediate goal of an initial experiment is to test the universality of 
the emission directionality. 

 
Universal directionality 
 
           The pseudo classical, and even the classical, model is a good theory for the 
emission directionality, unaffected by the various approximations that appear to 
have such a strong effect on the width calculations. 
The classical model implies that only the phase space flow near the critical line is of 
importance for the emission directionality, because the trajectory loses the memory 
of its starting position during the chaotic diffusion preceding the escape. In the 
absence of dynamical eclipsing, all that counts is that the tangent adiabatic curve be 
reached eventually, and the directionality is then prescribed. The same can be said for 
the flow around the islands if dynamical eclipsing occurs. As a consequence, the 
emission directionality is expected to be the same for all resonances whose 
semiclassical quantization involves adiabatic curves pmq which are far enough above 
the critical line for escape. 
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This is shown in Fig. 1.4 for n = 1.54 where we expect dynamical eclipsing. 
The fact that the emission directionality is determined solely by the shape and the 
refractive index should work in favor of an experimental verification of results. While 
dynamical eclipsing has not yet been observed, an experiment was recently conducted 
which confirms the emission from the high curvature points [21].  
 
 
 

 
 
 
Figure 1.4. Far-field directionality for 5 different resonances of the quadruple at  
eccentricity e = 0.65 and refractive index n = 1.54, displaying the peak splitting due 
to dynamical eclipsing.[2] 
 
 
 
This was done by creating a cylindrical stream of ethanol containing a lasing dye, 
which had an oval cross section due to the rectangular orifice at which it was 
produced. The far-field intensity was found to be peaked, with two maximal in 
agreement with our discussion above. An observation of importance for device 
fabrication is that the directionality is also largely independent of deformation 
beyond some transition region. 
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Figure 1.5 . Far-field directionality in the quadruple with increasing eccentricity e at 
n = 2 for the resonance with m = 45, kR = 27.8 [2] 

 
          This is illustrated in Fig.1.5 showing essentially the same intensity 
distribution above e = 0.3. At e = 0.3, only tunneling escape is possible. As in the 
ellipse, we still have escape predominantly from the minima of the invariant curve on 
which the ray moves. The conclusion is that this configuration allows us to tune the 
resonance width over a large interval of practically exponential dependence on e, 
while the directionality stays unaffected.  
 
In particular, the directionality in the tunneling regime is correctly predicted by the 
pseudo classical model. 
In the case n = 1.54, dynamical eclipsing only occurs after the islands responsible 
for it have grown to sufficient size. Before that point, the emission looks similar to 
that of the billiard with n = 2. As shown in Fig.1.6 the four-peak structure has fully 
developed at e = 0.45, again well before chaotic diffusion becomes possible. 
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Figure 1.6. Far-field directionality in the quadruple with increasing eccentricity 

e at n = 1.54 [2] 
 

Emission directionality of quasi-bound states 
 
          Whereas up to now the quasi-bound state was introduced only as a 
convenient tool for extracting resonance widths and positions that could 
otherwise be determined from Breit-Wigner fits for the scattered intensity. This 
question was also studied by Young and co-workers [22]. The quasi-bound state 
can be thought of as the limiting case of a wave packet launched in the cavity 
and decaying to infinity. An emission process such as lasing, where the light 
waves are generated in the cavity, rather than being sent in from infinity and 
then elastically scattered. 
 
If the resonant state is at the complex frequency  
 

( )i c k ikω γ− ≡ −                    (1.23 ) 

 
 
 then the corresponding solution of the time dependent wave equation decays at  
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a rate γ since it has the form  
 

( ) ( ), i t tr t r e eω γψ ψ − −=          (1.24) 

 
where γ > 0. But as a function of r, the outgoing waves in fact exhibit exponential 
growth because 

 

( ) ( ) ( )1 / 2 / 42 i x m
mH x e

x
π π

π
− −≈    (1.25) 

 
for large values of  x = (k—ik)r . The physical reason for this growth with ekr is a 
retardation effect: the field at r >> R has propagated away from the cavity 
where it originated a time /t r c∆ =  in the past - but at that earlier time the field 
at the cavity was larger by a factor e-γ∆t. 

 
As can be seen from Eq. (1.25), all the Hankel functions in the outgoing wave 

depend on r through the same factor  ( )2 i k ik re
xπ

−  in the far-field (r >> R). 

Pulling out this common dependence, the field of the quasibound state 
factorizes into radial and angular functions, 
 

( ) ( ) ( )2 i k ik rr e E
x

ψ φ
π

−=             (1.26) 

 
This means that the directionality at large distances becomes independent of r, 
being contained solely in Ψ(Φ). Chosen r in this far-field region and plot the 
square of the electric field (which is proportional to the intensity) as a function of 
Φ to obtain the wave directionality. 
 
Also note that the above-mentioned exponential growth does not show up in this 
figure. This is clear from Eq. (1.26), which tells us that due to the prefatory 
the wave function will in fact fall off up to a distance r = l/(2k), and only 
beyond this r begin to grow. Since KR < 1/10 as will be seen later, the figure 
captures only the spatial decay. This emission process differs from elastic 
scattering which requires an incoming wave to excite the resonance. The 
directionality pattern in a scattering experiment will depend on the form of the 
incident wave both because of interference with the outgoing wave, and because  
the incident wave may couple preferentially to different senses of circulation of 
the rays. These effects are absent in emission, so a unique directionality profile 
will be observed that depends only on the quasibound state itself and should be 
approximately described by our ray optics model if kR is sufficiently large. 
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Whispering gallery modes WG 
 

Whispering gallery modes and their ultrahigh cavity quality Q factors of circular  
micro cavities can be associated with regular ray dynamics in the cavities. 

If the interface can be made clean and smooth, the only leakage out of such a 
cavity stems from the fact that the surface has a finite curvature so that total 
internal reflection is violated, allowing a small fraction of the internal intensity 
to escape. This mechanism is closely related to quantum mechanical tunneling, 
and the escape rates are correspondingly small. Consequently, we will study the 
particular class of resonators characterized by a (not necessarily small) deformation 
which, however preserves convexity everywhere along the boundary. We call this 
class asymmetric resonant cavities (ARCs). Asymmetric resonant cavities hold 
great promise as the Kolmogorov-ArnoPd-Moser (KAM)  theorem of 
Hamiltonian classical mechanics experimental systems. The results that are 
obtained for whispering gallery modes in simple convex but strongly asymmetric 
resonant cavities can be summarized as follows: 

Red shift: The resonance frequency always shifts to lower values with increasing 
deformation when constant area is maintained. This can be explained using an 
adiabatic approximation based on the proximity to the boundary and hence to 
Lazutkiirs caustics. 

Broadening: The resonance lifetime, r, always decreases with deformation. For 
each resonance, there is a classical threshold deformation beyond which its lifetime 
is dominated by classical ray escape as opposed to tunneling (i.e. the small 
violation of total internal reflection present even in the circle).  

At such large deformations, r becomes independent of frequency provided a; is 
large enough. The universal resonance broadening depends only on the index of 
refraction and the angle of incidence characterizing the whispering gallery orbits. 

Directionality : Emission from a quasibound state is highly anisotropic at 
strong deformations, with intensity peaks in directions that are determined to 
high accuracy by the phase space structure of the classical ray dynamics inside 
the cavity. At deformations high enough for classical escape to dominate over 
tunneling, the directionality is furthermore universal for all whispering gallery 
resonances, and the only parameter that affects it is the refractive index. 

In the circle, we know that whispering-gallery WG resonances are narrow due to 
the low tunneling escape rate. The basic idea that opens the connection to 
nonlinear dynamics is that at sufficiently large deformations, a new and competing 
escape mechanism becomes dominant, replacing tunneling as the process limiting 
the decay. The resonance lifetime at high deformation is limited by classical ray 
escape. 
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The Husimi distribution  is a Gaussian smoothed version of the Wigner   function, 
representing the corresponding quantum mechanical probability  distribution in      
phase space [4]. Husimi distribution has significant overlap   with the region below 
the critical angle and thus the output directionality is mainly determined by  the     
intracavity mode distribution as usual [3]. In addition, for high-Q modes for rather 
small nka, namely � 50,  which happens to be the size parameter at which many  o
ther   theoretical studies have been performed on the role of unstable manifolds in 
output directionality [4], the faint structure corresponding to the unstable              
manifolds has not been observed in numerical studies  [3]. 

The evident importance of the system’s underlying classical phase space for the    
behavior of the quantum or wave mechanical analogue (based   on the analogy          
between Schr¨odinger and Helmholtz equation [1]), its   specific structure cannot  
be reconstructed from the traces it leaves in   typical observables like energy level 
or wave function statistics. 

Recently predicted super scars have been identified experimentally and using the 
well-known analogy between the electric field strength and the quantum 
mechanical wave function in a two-dimensional microwave billiard their 
properties determined 

 

 

 
 

 

 

 

Figure 1.7. Scarred light distribution in a distorted glass fiber cavity [1] 

 

To establish some experience with the phenomenology of the chaotic transition in 
billiards, it is instructive to discuss . These will subsequently be used both in 
classical and wave mechanical calculations. Only convex deformations of the 
circle are of interest to us, because that is the requirement for the existence of 
whispering gallery orbits. 

To compare different shapes among each other, a measure of the deformation is 
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required. 

 

 

 
 

 

 
Figure 1.8.  (a) A typical quasiperiodic trajectory in the circular billiard 
                    (b) Five- bounce periodic orbits [1] 

 

 

 

 

 
 

 

Figure 1.9. Experimental eigenfunstions in a microwave resonator of shape of a 
stadium billiard. For the display of the wave functions the stadium has been 
completed by a twofold reflection. All wave functions show strong scarring close 
to classical periodic orbits.[1] 

Avoided crossing 

Eigenvalues of these quantum systems generally exhibit repulsive interaction. This 
interaction comes from an absence of conserved quantities other than energy in the 
corresponding classical systems, and gives rise to avoided crossings when a 
parameter of the Hamiltonian is varied. These features have been studied by the use 
of eigenvalue statistics such as the nearest-neighbor spacing distribution and the 
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spectral rigidity [5-7] 

We can see that the characteristics of eigenfunctions alternate between two levels 
when the parameter goes through an avoided crossing. At an avoided crossing, 
eigenfunctions do not exhibit clear characteristics of scars. From the above 
observation, we can generally expect that invariant characteristics 
corresponding to scars continuously change along the diabetic transition 
lines rather than along the adiabatic level lines. 

 

 

Figure 1.10. (a) Eigenvalues of stadium billiard under variation of the aspect 
ratio λ as a parameter (solid line), and diagonal elements, a(λ) and b(λ), in the 
diabetic representation (dotted line); (b) squared absolute value of 
eigenfunctions around the avoided crossing. These are the 289th and 290th 
states in the antisymmetric subspace of stadium billiard having the area π+4 
[4] 

The relation between diabetic transformation and periodic orbits can be seen 
through Fourier transformation of the level density 

( ) ( ) ( ) ( )~
2 2

0
1 1

exp
exp

2
N

Nk j

j
j j j

ik x
d x dk ikx k k

k
δ

∞

= =

≡ − ≡∑ ∑∫        (1.27) 

 
where k 2j is a value of the jth energy level. 
 
 
Microcavity laser 

The prototypical optical system that spurred our interest is the which has been 
realized experimentally both in liquid droplets with a lasing dye. Conventionally, 
one uses Bragg reflectors to provide Fabry-Perot type mode confinement, but this 
does not lead to quantization of all degrees of freedom, and one faces 
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limitations in the feasibility of fabricating small devices. The reason is that the 
Bragg reflectors then become large in relation to the actual cavity. 

The microcavity lasers do not require Bragg reflectors at all. They make use of 
modes propagating inside a dielectric close to the interface with the air outside. 
These modes correspond to rays traveling around the perimeter, confined to the 
dielectric by total internal reflection at the interface.  

The study of classical periodic orbits can be a good starting point in fully chaotic 
systems because of the following three reasons.  

-  The first is that periodic orbits are known to correspond to energy levels in 
the semiclassical limit. This correspondence is given by Gutzwiller's trace formu-
la, 

 

 

( )
01

exp
2sinh / 2 2j periodic orbitsj

Ti i
s il

E E

π
α−

 ≈ − × − −  
∑ ∑

h h
    ( 1.28) 

 

where To is the period of a classical orbit, S is the action integral along it, / is 
the Maslov index, and a is determined from the stability of the orbit. 
According to this formula, the Fourier transformation of the level density is 
expected to have peaks at each length of the periodic orbit with a height 
corresponding to the stability of it [8]. 

- The second reason is the existence of scar eigenfunctions [9,10]. This 
clearly shows that each eigenstate can be a superposition of a few classical 
periodic orbits. We expect that eigenstates can be characterized by classical 
periodic orbits for chaotic systems in place of tori for integrable systems. 

-  The third reason is that, in fully chaotic systems, periodic orbits densely 
exist in phase space because of the ergodicity. Although they are isolated, 
they can play a role in coupling quantum states because of the finite h.             

      Deformed Microcavity (DMC) 

Besides advantage properties to investigate the chaotic system similar a 
microcavity as compact size, high Q-factor, ..a deformed microcavity also has 

- Directional emission. 

- High - Pumping efficiency (no resonant case) 

- Chaotic ray dynamic (basis of wave chaos) 
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We have chose the liquid micro jet DMC is a tool for studying ray and    wave chao
s. The properties of micro cavity highly depend on the degree of deformation.. If o
ne can tune the deformation of a micro cavity from a perfect  circle to a final defor
med form continuously, one can follow the evolution of modes and thus can easily         
identify the origin and mode   numbers of observed modes of DMC. Such               
identification allows us to   perform direct comparison with wave calculation and  
helps us obtain better understanding on the connection between the mode              
distribution, cavity  quality factors and output directionality of these modes, and    
the aforementioned chaotic ray dynamics. 

 
       
 

Figure 1.9. Directional and Chaotic ray dynamic in some micro cavity.[16] 
 

Actually, we can control of the degree of deformation and thus we can follow a 
mode evolution continuously. While the Direction of lasing emission is different 
and Q - values are tunable by the degree of deformation.  

 

  Quadruple micro cavity (QMC) 

  The boundary is parameterized in polar coordinates by 

( ) ( )
2

1
1 cos 2

1 / 2
r φ ε φ

ε
= +

+
    (1.29) 

The area of this domain is π. All other deformations will have as their dominant 
multimode component this term, and we can therefore use the strength of the  

1
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quadruple part as a measure of the deformation that allows a comparison 
between different shapes 

The output directionality observed from deformed micro cavities has been 
explained either by ray dynamics based on chaos theory [1], or by the nature of 
modes obtained from Maxwell’s wave equations. Adequacy of each approach 
depends on several factors, but most importantly on the size of micro cavity with 
respect to the wavelength of interest or the size parameter nkr, where n is the 
refractive index of the cavity medium, k - the wave vector with λ the wavelength 
and r the representative radius of the cavity. 

  

 
 

Figure 1.10. A quadruple deformed microcavity. 

                     Its component is more than 97% [16] 

 

Since the damping constant of some DMC, we see that after 39 µs (period of 
oscillation) only quadruple shape remains: No movable points are characteristics 
of only a quadruple.  

                                                                                                                     (1.30) 

 

 

 

0(1 cos(2 ))r a η φ= +

0

30

60

90

120

150

180

210

240

270

300

330

Quadrupole cavity 

0 2 2 3 3 4 4(1 cos2( ) cos3( ) cos4( ) )r a η φ ϕ η φ ϕ η φ ϕ= + + + + + + +⋅⋅⋅⋅



 26 

2. Experiment 

In principle  

We have developed a technique for realizing a two dimensional quadruple micro 
cavity with its deformation variable from 0% to 20 % continuously using a liquid 
jet ejected from noncircular orifice. With this technique, we investigated the far 
field evolution depending on deformation parameter from regularity to chaos. 

The Liquid jet micro cavity is the most suitable to study fully chaotic systems 
because of the following three reasons 

- Ultra high Q-value, small size and clear boundary shape is possible due to the 
smoothness of surface by surface tension. 

- The degree of deformation is continuously tunable. 

- It is easy to control the concentration of gain material 

The micro jet is excited by an argon-ion pump laser at 514 m. The pump laser is     
focused with a cylindrical lens into a thin profile  with a thickness of 10 µm in the 
z direction so that a thin slab can be selected to be a two-dimensional micro cavity   
in the micro jet. The fluorescence emitted from this region is collected by an          
objective lens and delivered to a spectrometer with a charge-coupled-device          
detector.  

An DMC can be obtained from a horizontal cross section of a micro jet, which is  
made of ethanol n=1.361 doped with Rhodamine B dyes as  gain molecules. The   
cavity-modified fluorescence (CMF) or lasing light  from the QDM is collected by 
an objective lens with a full collection   angle of 5 degrees and focused on to an     
entrance slit of a spectrometer. 

 
 

 

Figure 2.1. Schematic of our experimental setup for measuring cavity   mode        
spectrum and single-mode far-field emission pattern of a QDM.[11] 
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The fabricating process of deformed orifices 

The shape of the jet column can be approximated in the cylindrical coordinates  by 
the following time independent equation  

, 0

2
1 exp sin cos 2t z

z z

z
r z

v v

πη ξ θ
τ τ

   
= + − +    
    

           ( 2.1) 

where a is the mean radius, η is a  deformation parameter, τ  is the   decay rate, T   
is the period of oscillation, and ξ  is an initial phase of oscillation. The jet velocity 
vz is assumed to be uniform across the  entire jet 

 

 

 
 

 

    Figure 2.2. a. Model for the deformed microjet column.  
                           b. Fabrication procedure of a noncircular orifice.  
                           The side view shows that the inner walls are inclined. [11,16]          

 

 

From Eq.1.29, the micro jet boundary at the nozzle z=0 is  

( ) ( ), 1 cos2
n

n nr z aθ η θ = + −
 

      (2.2) 

The tip of a Pyrex tube is placed vertically in the center of a Nichrome heating coil. 
The bottom of the orifices are melted, narrowed and inclined, resembling the letter 
“V,”. The tip are pressed with a tweezers to desire deformation. The end of cut 
back and polish them to control their dimension. Gradient about vertical axis play a       
critical role in tuning of deformation 

A noncircular orifice induces a micro jet to form a stationary tidal column as          
depicted in Fig.2.2 – 2-5, the micro jet surface becomes well approximated by Eq.
2.2  demonstrate a horizontal cross section of a micro jet or antinodes planes at zn 
as Dn (n=1,2,3,...).We made orifices a different deformation. 
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Obtain a deformed microcavity 

Due to surface tension, the liquid jet ejected from the deformed orifice exhibits 
shape oscillation as it is launched upward. 

 

 

   
 
Figure 2.3. Obtain the shape oscillation from the deformed microcavity 
                  The left view is a real image of a noncircular orifice [16] 
 

A two-dimensional asymmetric resonant cavities (ARC), specifically a quadruple 
deformed micro cavity (QDM), is obtained by selecting cross- sectional planes        
located at the extreme zn’s (n =−1,0,1,2,...) in Fig.2.2 (a) of the amplitude               
oscillation, where the cavity boundary is given by Eq.2.2 

The degree of possible three-dimensional (3D) effect due to a finite  thickness of   
the region to be used in experiment around the cross- sectional plane, which is       
about 10µm, can be estimated in the following way. Under our experimental          
conditions to be described below, a  typical value of vzT is 280µm, which is much  
larger than the mean radius a of  15µm. The possible variation in the cavity size    
over the 10µm region in   the z direction is then estimated to be less than 0.1% or  
0.02 µm in diameter, and therefore the 3D effect can be safely neglected. 
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Control the degree of deformation 
 
In principle, when has been ejection pressure change, radial velocity of jet change 
and correspondingly initial degree of deformation change 

From η0 can deformation tuning at antinodes planes by the jet ejection pressure. Fo
r example, with an ejection pressure increased  to  2.0 bars, we obtained a new set 
of QDM’s with deformations of 29,8 % (D1), 20,4 % (D2), 14,5 % (D3), 10,6 % 
(D4), 7,5 % (D5),5,0 %(D6) etc., increased from 22,4 % (D1), 16,9 % (D2), 12,6 
% (D3), 8,5 %(D4), 5,5 % (D5), 4,3 % (D6), etc. at 1.8 bars. (Fig. 2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.4.  Variation of deformation parameter according to the ejection 

          pressure of the jet at D2–D5 positions.[16] 
 

The pinching of the nozzle in one direction in the fabrication process has                
introduced different inner wall slopes, and these different wall slopes in turn           
induce different initial radial velocities, which makes it  possible to tune the cavity 
deformation. We then obtain the following result showing that the seed                  
deformation can be controlled by the jet  ejection velocity 
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    (2.3) 

 

Due to the gradient about vertical axis, jet flow out with initial radial velocity and 
the initial deformation increase by initial radial velocity. 
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    Figure 2.5. Principle schematic of Controlling the degree of deformation [16] 
 
 

The jet ejection velocity is easily controlled by the ejection pressure. It  is noted     
that the oscillation of the quadruple deformation along the z direction is analogous 
to a damped harmonic oscillator with a nonzero launching velocity. The                 
dependence of ε and consequently the amplitude  of deformation oscillation on the 
jet velocity vz are illustrated in Fig.2.5.  In addition, the contribution due to the       
damping in the initial radial velocity is much smaller than that of the harmonic       
oscillation. 
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Measure the degree of deformation from diffraction pattern 

The degree of deformation of QDM’s can be determined from their diffraction      
patterns made by an incident Ar laser. The deformation parameters measured by     
the diffraction technique as in Figure 2.6. The  degrees of deformation of QDM’s  
are found to be : 

29,8% (D1), 20 % (D2), 14,5 % (D3), 10,6 % (D4), 7,5 % (D5), 5.0 %(D6), etc.    
under 1.8 bars of ejection  pressure. 

 

 

 

 

 
 

 

 

 

 

 
 

Figure 2.6. Measure the degree of deformation from diffraction pattern [16] 
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Obtain the evolution of lasing directionality 

          One of the behaviors to reach studying the quantum states is to consider 
them at the boundary of classical mechanics whereas the applicability of classical 
mechanics theory. Therefore the principle to build a deformed micro cavity for 
research quantum properties in chaos medium to elucidate the interplay between 
wave and particle natures of light. 

The output directionality observed fro deformed micro cavities has been explained 
either by ray dynamics based on chaos theory [1], or by the  nature of modes         
obtained from Maxwell’s wave equations. Adequacy of  each approach depends on 
several factors, but most importantly on the   size of micro cavity with respect to     
the wavelength of interest or the    size parameter nka, where n is the refractive       
index of the cavity medium, k= 2π/λ- the wave vector with the wavelength and a   
the representative radius of the cavity. Since the off-resonance pumping efficiency 
for a QDM depends on pumping angle [12], the pump laser beam is delivered        
through an optical fiber with its exit end mounted on the rotatable stage with a       
fixed angle of 45◦ with respect to the major axis of QDM when output spectrum    
and directionality are measured. The cavity-modified fluorescence (CMF)or lasing 
light from the QDM is collected by an objective lens with a full collection angle  o
f 5 degrees and focused on to an entrance slit of a spectrometer. A polarizer         pl
aced in front of the   slit selects only the polarization component parallel to the QD
M column. The emission spectrum is then measured for a fixed angle θ of the      r
otation stage (Figure 2.7) 

The size parameter nka have a important role to choose the regime whereas mode 
formation in the cavity. In other words, let’s find what its value corresponding to   
an interesting regime where wave and particle nature  of light may coexis. 

With nka large , the fact that the free spectral range (FSR) of a mode in such large 
cavities is not much larger than the line widths of individual modes of relatively      
low cavity quality factor Q, associated with the observed output directionality. 
Actually, properly chosen size parameter nka~200 due to limitation in numerical   
computation and due evidently the various modes observed in this case, to              
elucidate the interplay between wave and particle natures of light in DMC [11]. 

A hint comes from the observation that the far-field emission pattern obtained        
from ray dynamics in classical limit for the QDM is similar to those from the wave
 calculation and the experiment. For an open system, long time ray dynamics in
       chaotic region are predominantly determined  by the so-called unstable manifo
lds [2, 3].  

As the deformation is increased gradually, this dynamical regularity begins to be   
broken following the Kolmogorov-Arnold-Moser (KAM) scenario in phase space.  
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The emission pattern also experiences a dramatic change from isotropic emission   
to collimated tangential emission at high-curvature points on the surface. When the 
deformation is further increased, even KAM tori are broken and the internal ray    
dynamics becomes more chaotic. 
 
These universal directionality of high Q modes can be explained by  unexpected  
manifestation of particle nature  of light or ray flow in classical chaos in the           
formation of quasi-bound states in quantum chaos, corresponding to the wave       
nature of light. 

By background luminescence, mostly due to bulk fluorescence of the cavity         
medium, can be discriminated. The resulting single-mode far-field emission          
pattern is shown in Fig.2.7. In comparison, previously reported far-field patterns      
for deformed micro cavities of nka�103 [3 ] were measure without any resolution 
on individual modes and thus they correspond to multimode far-field emission      
patterns. 

 

 
 

 
 
Figure 2.7. The emission directionalities seen in the far-field distribution show the 
transition of mode dynamics from regularity (0%) to chaos (22%). 
Emission properties : at 0 % : Isotropic emission,  
                                  at 5 % : Tangential emission at high curvature,  
                                  at 16 % : Highly directional emission [16] 
 

  Since rays escapes from an open cavity before reaching complete lyer geodic limi
t,  ray dynamics is usually restricted in limited phase space and thus  follows a few
    dominant unstable manifolds. 
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We observed the evolution of lasing directionality from deformation parameter 0% 
(regularity) to 22% (chaos) in Figure 2.7. This result has compared with calculated 
wave function in figure 2.8. They are represented the correspondence with each 
other.  

 
 
 

 
 

Figure 2.8. Results from calculated wave function with nka ~ 35 [16] 
 
 
Conclusion 
 
              Above experiment results  have elucidated basics of quantum chaos theory in 
Session I. Clearly, the deformed micro cavity is an efficient tool  to study quantum 
chaos phenomena, which essential high complicated. The fabricating of deformed 
orifices is successful and its parameters chosen appropriately obtained interesting 
results. In the future we hope from that DMC will obtain complicated spectra  for 
avoided crossing effect as well as  its deferent interesting effects.   
 
 
 
 
 
 
 

0%      5%      

             

    Comparing with 
calculated wave function 

nka ~ 35 

(n=refractive index, k=2π/λ, a = radius) 
(nka ∼98) 
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