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Abstract

One of the behaviours to reach studying thentpum states is to consider them
at the boundary of clasical mechanics whereas thdicability of clasical
mechanics theory.

Quantum chaosarising from semiclassical models and the clab$ioé of a
guantum description may lead to a mechanical systiéimchaotic dynamics.

We propose the principle to build a deformed miaxaty for reseach quantum
properties in chaos medium to elucidate the ingsgrfletween wave and particle
natures of light.

We have been used the deformed microcavity as@egity tool to study that
chaos medium.

We have developed a chechnique for realizing adimtensional quadupolar
microcavity with its deformation variable from 0% 20 % continuosly using a
liquid jet ejected from concircular orifice. Withis technique, we investigated the
far field evolution depending on deformation pargenérom regularity to chaos.



Tom tat ndi dung cong trinh

Mét trong nhiing phrong cachdé dat toi viéc nghién éu cac tang thai lrong
tu 1a xem xet chlng gioi han cia @ hoc & dien mao do ta cé thk ap dingdugc
ly thuyet co hoc @ dién.

~Quantum chaos ldugc phét trén tir cAc md hinh bandoedién va gisi han o
dien cia not mo # luong tir €O the dan t6i mot hé vaoi dong hoc hon loan

Chuing t6idé ra nguyén Iy tHt 1ap mot héc cong hrong vi md bén dang dé
nghién @&u cacdac tinh krong tir trong moi trong ton loan dé lam sangd tac
dong lan nhau gira song va &t.

Chung t6i & dung hoe ang hréng vi mo bén dang nhr 1a mbt cdng @ hiéu
gua dé nghién ¢ru moi teong hon loan do.

Chung tdi phéat tén mot ky thuat dé tim hiéu mot héc adng hrong vi md bén
dang bdn anh wi do bién dang thayddi lién tuc tir 0% dén 22% s dung mit
dung dch dugc bom vao fr cadcdng khong tron . i ki thuat nay, ching toida
nghién &u tién trinh trong- xa phr thuc 18n cac thdngdsbién dang tir sr can
ddi dén hdn loan.



1. Quantum chaos and its questions under investigation

Introduction

Quantum chaosattempts a synthesis of ideas from two active aedefields:
The study of optical microcavities, and the theofydynamical systems whose
classical phase space is partially chaotic. Fomdaclassical counterpart, the
guantummechanics of chaotic systems, termed int Sigoantum chaos”, the
situation is completely different. Quantum chaodfilt sight seems to be the
exclusive domain of theoricians. The situation gedly changed in the middle of
the eighties, since when numerous experiments Hsen performed. The
underlying ideas are very simple. It is essentitiily mathematical apparatus that
makes things difficult and often tends to obscune physical background.
Therefore the philosophy adopted here is to a gtraccentuation obilliard
systemsfor which a large number of experiments now e)a@stce the uncertainty
relation

1
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prevents a precise determination of the initial dibons. This can best be
illustrated for the propagation of a point- likerfiee in a box with infinitely high
walls. For obvious reasons these systems are dallealds.

The billiard, though being conceptually simple, nevertheledsibits the full
complexity of nonlinear dynamics, including its qtam machanical aspects.
Probably there is no essential aspect of quantueoshkvhich cannot be found in
chaotic billiards. Quantum mechanics has now edigtie more than 60 years and
has probably become the best tested physical thexsey conceived. Quantum
mechanics can handle not only the hydrogen atonehwisi classically integrable
but also the classically nonintegrable helium atéva.may even ask whether there
is anything like quantum chaos at all. The Schrgéinequation is a linear
equation leaving no room for chaos. Today the teEuantum chaos” is generally
understood to comprise all problems concerningythentum machanical behavior
of classically chaotic systems. Quantum chaos & study of no separable
Schrodinger equations based on a knowledge ofrttlerlying classical mechanics,
which can be chaotic when the systemas-integrable.

Generally, resonances are long-lived quasi-bouatestin anopen systemthat
arise due to interference, and they give rise @yghkariation in scattering phase
shifts, cross sections, transmission coefficiestts,, as the incident wavelength is
varied. An open system is characterized by thetexie of propagating waves at
large distance from the region where the quasi-datates are formed.



Helmholz equation in billiard experiments

Let x(0) =[ %(0),...%, (] be the vector of the dynamical variables at theett

= 0. At any later time t we may write x(t) as adtian of the initial conditions and
the time as

x(t)=F[ x(0),t] (1.2)

If the initial conditions are infinitesimally

x (0)=x(0)+&(0), (1.3)

then at a later time t the dynamical variables ttgvaccording to
x (t)=F[ x(0)+£(0).t]. (1.4)

The distanceé (t) =x, (t)-x(t) between the two trajectories is obtained from
Egs.(1.2) and (1.4) in linear approximation as

£(1)=(¢(0)0)F[x(0) ] 15)
Written in components Eq. (1.5) reads

_v 9F,
(=250 (L)

The eigenvalues of the matrM = (aFn /axm) determine the stability properties of

the trajectory. If the module of all eigenvalues amaller then one, the trajectory
is stable, and all deviations from the initial éetory will rapidly approach zero. If
the modulus of at least one eigenvalue is largan tbne, both trajectory will

exponentially depart from each other even for itdgsimally small initial
deviations.

Stationary solutions of the Schrodinger equatiom @stained by separating the
time dependence,

W, (xt) =g, (x) ™. (1.7)
we have
(A+k2)w,(9=0 (1.8)



where @, and k, are connected via the dispersion relation
w =—Kk? (1.9)

Equation (1.8) is also obtained if we start with tiiave equation
A —ia—z @=0 (1.10)
c® ot? ’ '

where c is the wave velocity, and if we separg@g&irathe time dependence by
means of the ansatz (1.7). In contrast to the @ui@ddispersion relation (1.9) for
the quantum mechanical case we now have the Iretson

@, =ck, 11)

betweenw, and k, . It is exactly this correspondence between théiosiary

Schrodinger equation and the stationary wave eguadilso called thélelmholz
equation, which has been used in many billiard experimgatstudy quantum
chaotic problems using wave analogue systems.

Integrable systems

We have learnt that random matrix thesryperfectly able to explain the
universal properties of the spectra of chaoticesyst On the one hand it is very
satisfactory that one single theory can cope witbhsa variety of systems as
nuclei , mesoscopic structures, or microwave bdba on the other hand this is a
bit disappointing. If there is no possibility ofsdriminating between the spectra of
a nucleus and a quantum dot , then there is litipe of learning anything of
relevance about it.

Fortunately, random matrix theory is only one sidiehe coin. The spectral level
dynamics where bouncing balls disturbed the otreswuniversal Gaussian
velocity distribution. Another example is the saagrphenomenon observed in
many wave functions. Here obviously closed classarbits have left their

fingerprints in the amplitude patterns. We canngteet that the universal random
matrix theory can correctly account for individ@@htures such as periodic orbits.

As we know from the correspondence principle, im skemiclassical limit of high
guantum numbers. We have already discussed thisectian for a particle in a
one- dimensional box. The general case has beatedrey M.Gutzwiller [17,18].

In there have two part : Trace formula, establigrancorrespondence between the
guantum mechanical spectrum and the periodic oobiéssystem and a number of
applications of the trace formula will be examined.



In most isolated mechanical systems occurring in reatthe only conserved
guantity is the total energy. As soon as there iserttuan one degree of freedom, it
becomes very difficult to solve the equations of mtinder these circumstances.
Practically all textbook examples for motion in more nthane dimension
therefore belong to a special class of systems whichalledintegrablebecause
the trajectory can be found by a set of quadratures.

Assume that in addition to the Hamiltonibi let found another functioK(x )of
the phase space variables that is also consenedKi H} = 0. The system is
integrable if there aré& conserved quantities likel and K which are also pair
wise independent and have vanishing Poisson bragkieteach other. Let explore
this situation for the special case Mf= 2. Independence df andK means that
we require their gradients to be linearly indepemde

O H#zaO K (1.12)

every where except at isolated points in the fdureshsional phase space. The
trajectory is constrained by the two equatidi§&}=E and K{x}=const, and
therefore lies on a 2D surfaéeAny point on that surface can serve as the initial
condition for a unique trajectory consistent with thengervation laws, and the

resulting set of trajectories defines a new vector figld projection of%(;(jonto

the local tangent plane d& This 2D field covers the whole surface, and it is

nonzero everywhere provide(%[ij;ﬁ 0. The latter condition is assumed to be valid

in the cases of interest here, as is done thedektby Arnol'd [19]

In order forF to be covered by an everywhere nonvanishing vedédd,fits
topology must be that of a torus. One can easByalize that a sphere does not
admit such a field . In fact this topology introdiug further handles on the torus
will again make it impossible to avoid points of vdmig field.

The generalization of the above arguments to mag tlvo degrees of freedom
is that the trajectory will move on an N-dimensiota@bls in the 2N-dimensional
phase space. However, the cllse 2 is of particular interest to us.

Concerning the assumption that the vector field~das nonvanishing, it should
be pointed out that there are counter-examples,ehatme rational polygon
billiards [20], which consist of flat billiards boued by straight line segments
enclosing an angle which is a rational multiplerofThese systems are called
pseudo-integrable,and the motion of a trajectory is confined to a two-
dimensional manifold in phase space. However, thssipdity of (classical)
"beam splitting" at sharp corners implies that slagties of the above vector
field can occur. As a result, the surfaEeis a multi-handled sphere, which
becomes so complicated that the system shows sowmeries commonly
associated with nonintegrable dynamics, as for exampid kepulsion in the
guantum mechanical spectrum.



The longjfetime of photons in a laser resonator is what makes itilpless
to obtain coherent stimulated emission. Fharply peakedvavelength-dependent
transmission of a Fabry - Perot interferometer is litasis of high resolution
spectroscopy. The characteristic wavelengthas which resonances occur, as well
as their lifetimeg, are device-specific. In optics, one uses@factor as a figure
of merit for the resonator, whe@=w 7, o= 11C/A
When there exist as many conservation laws as thereegreed of freedom, a
system is calleihtegrable. The complexity of the problem is greatly increased in
non-integrablesystems, where it becomes impossible to reduce the @guegion
to a collection of separate first-order differengguations. Meanwhile in optics,
a theory ofnonintegrable resonators only existed in the form of perturbation
approaches [1] where the breaking of symmetriestwesged in the limit where
it causes only a small correction to the symmetric solutions.

Figure 1.1.Integrable shapes (left) in two and three dimensiodslasir
non-integrable deformed counterparts [2]

It has recently been realized [2] that nonpertudgateffects may in fact be
useful in device applications, and one thereforsirdes models that could make
predictions and provide explanations for phenomenaregbd in strongly non-
separable wave equations.

Classical ray dynamics

The ray dynamics analysis is facilitated by the axial sytnna the droplets which
implies (in the language of particle trajectories)tttiee z component of angular
momentum,L; is conserved. At any giveh, and total energ¥, the equations of
motion thus have only two degrees of freedom, just &lse deformed cylinder. This
becomes explicit in cylindrical coordinatesp, zwhere one has

1 2 .2 L2
ZE m(p tz ] + 2m1202 (1.13)




Let us look at the dynamics projected into the plxj coordinate system.

Each specula reflection causes a discontinuous changeaind z; however the

angular velocityg remains unchanged because the normal to the sudbem
axisymmetric cavity is always perpendicular to thelirection. Thus a 3D specula

reflection simply reverses the normal component of e jected veIocitQp, z)

and reflections are also specula in the projectedrdinates. Reflections occur
whenever the trajectoryp(z) intersects the boundary curvey(z). Between

reflections the particle motion is free,= const, and Eq. (1.13) can be integrated to
find p(t). It can be shown that’(z) describes a parabola whose vertex is the point of
closest approach to the z-axis and whose intessectvith the squared boundary
curve p,%(z) are the collision points. The curved trajectories the zp-plane
between specula bounces are to be contrastedvatsttaight paths in conventional
2D billiards where the centrifugal potentld, /(2mp?) is absent.

The resulting dynamics introduced dimensionlessabes in Eq. (1.13) by setting
E = 1/2andm = 1.Then one has

.2 L2 L2
1=p +z +,0_22 (1.14)

where0 < L; < pu(Znay) IS the maximum distance from the z-axipi$Znax). TO
simplify notation , assume that the droplets hédnegrtwidest transverse cross-section
in the equatorial plane, i.enax =0. Again the escape condition is simgiyy < siny.
where siny is the angle of incidence with respect to the surface rmrmat the
reflection point. This is not the same as the ndramgle in thep - z-plane, as can
be seen by considering a trajectory reflectingrehtiin the equatorial plane at
nonzerosiny ; its apparent angle of incidence in the—z-plane will be zero. The
angle in thep — z-plane is then given by

cosy,, = cosy klp?+2z? (1.15)

It is convenient in the plotting of Poincare sen8ao use as variables the polar
angle ¥ and the 3Dsiny at each reflection since in these coordinatesefwape
condition is still satisfied along a horizontalasght line.

At nonzeroL, certain regions of the SOS are forbidden due to Lthengular
momentum barrier (e.g. a ray reaching the géle 0) must have, =0). For the
allowed bounce coordinateg® siny one finds the inequalitging > LJ/pu(z(@)),
wherez(0) =t,(0) sind. Before discussing ray escape in the deformed di®jtlés
important to note that as we proceed from highefoteer L, in addition to the
excluded regions of the SOS decreasing (becausmthdar momentum barrier



becomes weaker) the degree of chaos grows rapidére is actually no visible chaos
and a mostly chaotic SOS fby = 0 for a droplet of fixed deformatioithe reason for
this is that high_, trajectories are confined near the equator anedssesection of the
droplet at the equator is perfectly circular, iregh L, orbits see an effective
deformation which is much weaker than polar orfiits= 0) which travel in the most
deformed cross- section of the droplet. The efiectieformation

£ = &1~ 121 p2(0) (1.16)

and tends to zero at the maximum allowed valuéoffhus as long as is large
enough to induce classical Q-spoiling for the= 0 orbits of interest, by looking at
different L, values for a fixed deformation one can study thessical Q- spoiling
transition in a single ARC.

Note that there is an absolute minimum allove&ty = siny,, which occurs at the
equator(¢ = n/2) wherep, is maximal (i.e., singm = L/ pp (0)). This implies that
classical ray escape is entirely forbidden dueht angular momentum barrier for
values ofL, > py, (0) siny. . As just noted these hidly modes are confined to orbits
near the plane of the equator ; since classicapests forbidden for these modes we
always expect to find high-Q WG modes in the equatoegion of axially-symmetric
deformed microspheres. Since this follows simpbnfiL, conservation it will be true

in both the oblate and prolate shapes.

Proceeding now to lowet, we see that the angular momentum barrier has
weakened enough that the allowed region of the B&Ses througkiny.and rays
with this value ofL, can escape. However as before WG modes will becegsd
with rays starting at largsiny = 0.9 in this case. These rays are unable to reach
siny. due to remaining KAM curves.

Therefore high Q WG modes for this valuelgfas well. This situation persists all
the way toL, = O for deformations less than roughly 5% of théiua, so little Q-
spoiling and approximately isotropic emission foradler deformations than this.
However for the 50% deformation used redudipg little more causes the appearance
of regions of chaos which extend from higjhy acrosssiny. allowing classical Q-
spoiling of the WG modes. All modes with less than this value to have their Q
rapidly degraded. As the Q of these modes decretsalt fall below the threshold
Q-value to support lasing and these modes will gik.dBut these lovi.~ modes are
the only ones which can emit from the polar regideszause of the angular
momentum barrier for the highy modes. Therefore the model explains naturally why
the polar regions are dark while the droplet $@lers. The low., modes which
could emit from the poles have too low Q to lased #he high Q modes which
support lasing are confined away from the polaiaeg This argument holds for
both the oblate and prelates deformations in ageeémith observations.

The question of why the emission profiles are nbeletss salifferentin prelates

versus oblate shapes. To answer this questiondbualhere the stable islands which
block chaotic escape occur for the two types obdwétions. The prelates shape
corresponds to a stretching of the droplet in thioal direction and a compression
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in the equatorial plane. Because it is compressede equatorial plane there exists a
large stable island #= 11/2 corresponding to the two-bounce diametric orbithef
type we discussed in the 2D case .

Ray trajectories

The problems with the proper definitiohthe term “quantum chaos“ have
their origin in the concept of thieajectory, which completely loses its significance
in quantum mechanics. Only in the semiclassicabredo the trajectories eventually
reappear, an aspect of immense significance irctimext of semiclassical system
with N dynamical variables 1x Xo,...Xy under the influence of an interaction.
Typically the x comprise all components of the positions and tlwenemt of the
particles. Consequently the number of dynamicalabées is N = 6M for three
dimensional M particle system.

This straightforward generalization of argumentsrfrthe circle allows us to define
the decay timeas an average over an ensemble of trajectorieh@radiabatic
curve pmp, Of the timet needed by each orbit to escape. For each orbiteshape
time t can be obtained from a Monte-Carlo simulation, deihg the classical
trajectory and producing at each collision with theundary a random number
between 0 and 1; if the latter is larger thgnescape occurs.

a)

Figure 1.2. Ray trajectories for circle (a), and quadruplecdefed circle (b)
parameterized bvy(w) =1+&cos in polar coordinates for = 0.08 corresponding

to an 8% fractional deformation. Rays are laundnewch the boundary at the sarde
and angle of incidence sjg = 0.7 in both cases; ray escape by refraction rscicu
case (b)[21]

The path lengthL of the ray up to this event is related to the esecame by
L = ct/n,and the decay time is

(%)
. (1.17)

where the average over different trajectories anatliabatic curve (denoted by the
angular brackets) is necessary becaigg is a function of positior® along this
curve, so the starting conditions are in equivalent
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The model thus defined suffers from #pproximation that coherence
of any kind is not taken into account. This inclsdee possibility of coherence
between successive tunneling events, becauserttuasion is purely sequential.
It also includes the fact that the internal evauatiof siny (or m) does not
necessarily follow the classical dynamics, e.gaaonsequence of dynamical
localization. The only wave effect that is containe the simulation is direct
tunneling through the instantaneous effective pdétbarrier as derived from
the angle of incidence.

Figure 1.3 The starting condition for the ray escape simaiais given by the
adiabatic invariant curvpny,q- If tunneling and above-barrier (Fresnel) reflectame
neglected, the classical escape condition is thatttajectory cross the line gin

= 1/n. This defines billiard with an escape window in phase space iinast be
reached by classical time evolution. This windowsiseared out when the above
wave effects are included.[21]

The first of Poincare's integral invariants

[ﬁpdq (1.18)

whereC is the g-space projection of any closed curve iagghspace, and all
pi and g, are evaluated at a the same time

The quantity in Eq. (1.18) is independent,oéven thouglC will change witht
according to the equations of motion. To show theariance of Eqg. (1.18),

consider each termp.dg in the scalar producp.dq separately and apply the
integration.
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It occurs when a ray starting on the adiabatic eurelonging to a WG mode
diffuses downward isiny. until the condition for total internal reflection

siny >% (1.19)

is violated. The real-space picture of this proogas illustrated in Fig.1.2, and
the location of starting and escape conditionsha Roincare section is shown in
Fig.1.3. As an implication of this argument, itpsecisely the deviation of the
trajectory from the adiabatic curve due to phasespdiffusion that determines
the resonance lifetimes at high deformations. THmes not constitute a
contradiction to the validity of the semiclassiqalantization provided the escape
times due to classical diffusion are still long egb to permit the adiabatic curve
to yield an accurate semiclassical quantizationaAsinimalcriterion, this calls
for at least one revolution around the boundaryglthe adiabatic curve

Multimode lasing

Lasing requires a gain medium and a cavity. Then gaiedium provides
amplification of a light wave traveling in the céyi depending on the pump
power P supplied to it. WherP exceeds théasing thresholdP;, the gain exceeds
the losses due to absorption, leakage from thetycatc. Consider a given cavity
mode with a loss rate dand a numbeN of photons in it. In the limit of a clean
resonatorz is just the resonance lifetime.

To maintain a steady-state laser action, the escaplotons from the cavity must
be compensated precisely by the stimulated emissitm the same mode. The
latter is proportional to the numb&i of inverted atoms (or molecules) that

interact with the mode, and to the intensity of thasting field. Therefore, can
write the stationary condition as

dN N
=—— =BNN-—
" N-— (120)

whereB is the Einstein coefficient for induced emission.

After canceling\ we are left with

N :ET (1.21)

which is independent of the pump power. The requénet of steady state therefore
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implies that the inversioN is clampedto a constant value as soonFagxceed<$t.
For the cavities of interest here, one has to asstivat many modes have spatial
overlap with the gain medium, although their respec may vary widely.

After the first mode starts to laser, we could stopreasingP and would thus
obtain a single-mode laser. i grows further, the original mode continues to
laser with the samBli as at threshold (P B), but other modes may also satisfy
the lasing condition that their modal loss be magdor by their modal gain. This
is possible if the spatial overlap of the originedde and the new mode is incomplete,
so that one has nodes where the other has antinBte® the interaction with the
gain medium is suppressed in the neighborhoodetd fiodes, two such modes can
interact with different atoms. The result is thiaé tsecond mode can indeed laser,
producing its own collection of inverted atom;. Let the threshold for this
second mode bi';. Its loss is larger than that of the first madke 1, corresponding
to P't > Pi. The interesting observation here is that accortbng

N, >N (122)

If we add the fact that the amount of pump enemerted into lasing emission grows
with the inversion, this leads to the statement tte lowest-r losing mode carries the
largest emission energfthe same can be said in the presence of more than t
lasing modes.

The lasing spectra obtained from liquid spheres patgl containing a dye do

indeed show multimode operation. While the londestd regular WG states are
always among the lasing modes, one can now seetl®vwemission directionality

should be dominated by those states whose lifetsnleng enough to meet the
lasing condition but shortened due to classicahpsc

It is then only a matter of achieving the requireftactive index before dynamical

eclipsing should be seen experimentally. In theeabs of a suitable liquid for this

purpose, a more immediate goal of an initial expent is to test the universality of
the emission directionality.

Universal directionality

The pseudo classical, and even the classical, me@ebood theory for the
emission directionality, unaffected by the varicysproximations that appear to
have such a strong effect on the width calculations
The classical model implies that only the phasesfi@w near the critical line is of
importance for the emission directionality, becatreetrajectory loses the memory
of its starting position during the chaotic diffasi preceding the escape. In the
absence of dynamical eclipsing, all that counthat the tangent adiabatic curve be
reached eventually, and the directionality is thegscribed. The same can be said for
the flow around the islands if dynamical eclipsiogcurs. As a consequence, the
emission directionality is expected to like samefor all resonances whose
semiclassical quantization involves adiabatic csiwgwhich are far enough above
the critical line for escape.
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This is shown in Fig. 1.4 for n = 1.54 where we entpdynamical eclipsing.

The fact that the emission directionality is detierexl solely by the shape and the
refractive index should work in favor of an expeeimtal verification of results. While
dynamical eclipsing has not yet been observedxpargnent was recently conducted
which confirms the emission from the high curvatpomts [21].

m=74,
kR=55.8,
sin y=0.B6

m=68,
kR=47.9,
sin ¥=0.92

m=68
kR=51.8,
sin x=0.85

m=68
kR=58.3,
sin x=0.76

Intensity (arb. units)

m=64
kR=4523,
sin x=0.92

Figure 1.4 Far-field directionality for 5 different resonancest the quadruple at
eccentricity e = 0.65 and refractive index 1.54, displaying the peak splitting due
to dynamical eclipsing.[2]

This was done by creating a cylindrical stream thiarol containing a lasing dye,
which had an oval cross section due to the rectanguifice at which it was
produced. The far-field intensity was found to beaked, with two maximal in
agreement with our discussion above. An observatibnmportance for device
fabrication is that the directionality is also lakg independent of deformation
beyond some transition region.
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Figure 1.5. Far-field directionality in the quadruple witlicreasing eccentricity e at
n = 2 for the resonance with m45,kR= 27.8 [2]

This is illustrated in Fig.1.5 showing essentialilje same intensity
distribution above e = 0.3. At e = 0.3, only tunnglescape is possible. As in the
ellipse, we still have escape predominantly froerinima of the invariant curve on
which the ray moves. The conclusion is that thisfiguration allows us to tune the
resonancewidth over a large interval of practically exponentialpdedence on e,
while the directionality stays unaffected.

In particular, the directionality in the tunnelinggime is correctly predicted by the
pseudo classical model.

In the casan = 1.54, dynamical eclipsing only occurs after thansls responsible
for it have grown to sufficient size. Before thaimt, the emission looks similar to
that of the billiard with n = 2. As shown in Figglthe four-peak structure has fully
developed at e = 0.45, again well before chaoffoglon becomes possible.
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Figure 1.6.Far-field directionality in the quadruple with ir@sing eccentricity
e atn=1.54[2]

Emission directionality of quasi-bound states

Whereas up to now the quasi-bound staés wmtroduced only as a
convenient tool for extracting resonance widths gmamkitions that could
otherwise be determined from Breit-Wigner fits foe scattered intensity. This
guestion was also studied by Young and co-work2?$. [The quasi-bound state
can be thought of as the limiting case of a wavekpalaunched in the cavity
and decaying to infinity. An emission process sashlasing, where the light
waves are generated in the cavity, rather thangosemt in from infinity and
then elastically scattered.

If the resonant state is at the complex frequency

w-iy=c(k-ik) (1.23)
then the corresponding solution of the time depeh#@eve equation decays at
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a ratey since it has the form
p(rt)=g(r)e™e” (24

wherey > 0. But as a function of r, the outgoing wavesaict exhibit exponential
growth because

H(l)(x)z ié’(x—mnlz—ﬂm) (1.25)

7TTX

for large values ofx = (k—ik)r . The physical reason for this growth witfi is a
retardation effect: the field at r >R has propagated away from the cavity
where it originated a timét =r /c in the past - but at that earlier time the field
at the cavity was larger by a facet'"

As can be seen from Eg. (1.25), all the Hankel tions in the outgoing wave

71X
Pulling out this common dependence, the field oé thuasibound state
factorizes into radial and angular functions,

depend on r through theamefactor /ie‘(k"k)’ in the far-field (r >>R).

_ | 2 i)
w(r) —\/%e E(o) (1.26)

This means that the directionality at large distenbecomes independent of r,
being contained solely it(®). Chosen r in this far-field region and plot the
square of the electric field (which is proportiot@aithe intensity) as a function of
@ to obtain the wave directionality.

Also note that the above-mentioned exponential gradoes not show up in this
figure. This is clear from Eq. (1.26), which tells that due to the prefatory
the wave function will in fact fall off up to a dence r = 1/(2k), and only
beyond this r begin to grow. Sing&R < 1/10 as will be seen later, the figure
captures only the spatial decay. This emission ge®cdiffers from elastic
scattering which requires an incoming wave to exdile resonance. The
directionality pattern in a scattering experimenli wepend on the form of the
incident wave both because of interference withatliggoing wave, and because
the incident wave may couple preferentially to eliéint senses of circulation of
the rays. These effects are absent in emissiom, woique directionality profile
will be observed that depends only on the quasibaiate itself and should be
approximately described by our ray optics modé&Ris sufficiently large.
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Whispering gallery modes WG

Whispering gallery modes and their ultrahigh cagtyality Q factors of circular
micro cavities can be associated with regular saadhics in the cavities.

If the interface can be made clean and smoothpttye leakage out of such a
cavity stems from the fact that the surface ha@idefcurvature so that total
internal reflection is violated, allowing a smalaétion of the internal intensity
to escape. This mechanism is closely related totgua mechanical tunneling,
and the escape rates are correspondingly smalsegoently, we will study the
particular class of resonators characterized mpar{ecessarily small) deformation
which, however preserves convexity everywhere akbiegboundary. We call this
classasymmetric resonant cavitie§ARCSs). Asymmetric resonant cavities hold
great promise as theKolmogorov-ArnoPd-Moser (KAM) theorem of
Hamiltonian classical mechanics experimental systeithe results that are
obtained for whispering gallery modes in simplewanbut strongly asymmetric
resonant cavities can be summarized as follows:

Red shift The resonance frequency always shifts to low&resawith increasing
deformation when constant area is maintained. This be explained using an
adiabatic approximation based on the proximity e boundary and hence to
Lazutkiirs caustics.

Broadening: The resonance lifetime, r, always decreases daflormation. For
each resonance, there is a classical thresholdndafion beyond which its lifetime
is dominated by classical ray escape as opposedinieeling (i.e. the small
violation of total internal reflection present evarthe circle).

At such large deformations,becomes independent of frequency provideds
large enough. Thaniversalresonance broadening depends only on the index of
refraction and the angle of incidence charactegitite whispering gallery orbits.

Directionality : Emission from a quasibound state is highly amot at
strong deformations, with intensity peaks in dir@t$ that are determined to
high accuracy by the phase space structure ofl#ssical ray dynamics inside
the cavity. At deformations high enough for claakiescape to dominate over
tunneling, the directionality is furthermoraiversalfor all whispering gallery
resonances, and the only parameter that affetsghe refractive index.

In the circle, we know that whispering-gallery W&sonances are narrow due to
the low tunneling escape rate. The basic idea dpens the connection to
nonlinear dynamics is that at sufficiently largéadmations, a new and competing
escape mechanism becomes dominant, replacing tngreed the process limiting
the decay. The resonance lifetime at high deforomais limited byclassical ray
escape.
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TheHusimi distribution is a Gaussian smoothed version of the Wignerctiom,
representing the corresponding quantum mechanrcddapility distribution in
phase space [4]. Husimi distribution has signiftaarerlap with the region below
the critical angle and thus the output directidgal mainly determined by the
intracavity mode distribution as usual [3]. In adxh, for high-Q modes for rather
small nka, namely! 50, which happens to be the size parameter atwhany o
ther theoretical studies have been performedendle of unstable manifolds in
output directionality [4], the faint structure cesponding to the unstable
manifolds has not been observed in numerical ssuf®g

The evident importance of the system’s underlyitagsical phase space for the
behavior of the quantum or wave mechanical analqgased on the analogy
between Schr'odinger and Helmholtz equation [13), ispecific structure cannot
be reconstructed from the traces it leaves inicymbservables like energy level
or wave function statistics.

Recently predicteduper scarshave been identified experimentally and using the
well-known analogy between the electric field sg#n and the quantum
mechanical wave function in a two-dimensional micawe billiard their
properties determined

Figure 1.7.Scarred light distribution in a distorted glagsefi cavity [1]

To establish some experience with the phenomenaddglye chaotic transition in

billiards, it is instructive to discuss . These Ivaubsequently be used both in
classical and wave mechanical calculations. Onlgver deformations of the

circle are of interest to us, because that is #dgpirement for the existence of
whispering gallery orbits.

To compare different shapes among each other, aureaf the deformation is
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Figure 1.8. (a) A typical quasiperiodic trajectory in theatitar billiard
(b) Five- bounce periodic osi]

Figure 1.9 Experimental eigenfunstions in a microwave retamaf shape of a
stadium billiard. For the display of the wave fuons the stadium has been
completed by a twofold reflection. All wave funat® show strong scarring close
to classical periodic orbits.[1]

Avoided crossing

Eigenvalues of these quantum systems generallyoxBpulsive interaction. This
interaction comes from an absence of conservedtitigarother than energy in the
corresponding classical systems, and gives riseavimded crossingsvhen a
parameter of the Hamiltonian is varied. These festhhave been studied by the use
of eigenvalue statistics such as the nearest-naigkacing distribution and the
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spectral rigidity [5-7]

We can see that the characteristics of eigenfungtadternate between two levels
when the parameter goes through an avoided crosAingn avoided crossing,
eigenfunctions do not exhibit clear characterisiésscars. From the above
observation, we can generally expect that invariacharacteristics
corresponding to scars continuously change alorgydiabetic transition
lines rather than along the adiabatic level lines.

Eigenvalue

Figure 1.1Q (a) Eigenvalues of stadium billiard under vaoatiof the aspect
ratioX as a parameter (solid line), and diagonal elemexfty and bg), in the
diabetic representation (dotted line); (b) squaraBdsolute value of
eigenfunctions around the avoided crossing. Thesetlee 289th and 290th
states in the antisymmetric subspace of stadiutakdl having the area+4

[4]

The relation between diabetic transformation andode& orbits can be seen
through Fourier transformation of the level density

exp(lk x)

N
2 @2

j=1

= [ dkexp( ik@é (&~ )

wherek 2,- is a value of the'] energy level.

Microcavity laser

The prototypical optical system that spurred ouerest is the which has been
realized experimentally both in liquid droplets kwd lasing dye. Conventionally,
one uses Bragg reflectors to provide Fabry-Peqm thode confinement, but this
does not lead to quantization of all degrees ofdwen, and one faces
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limitations in the feasibility of fabricating smatlevices. The reason is that the
Bragg reflectors then become large in relatiorhdctual cavity

The microcavity lasers do not require Bragg reftlestat all. They make use of
modes propagating inside a dielectric close toinberface with the air outside.
These modes correspond to rays traveling aroungeheneter, confined to the
dielectric by total internal reflectioat the interface.

The study of classical periodic orbits can be adgsi@arting point in fully chaotic
systems because of the following three reasons.

- The first is that periodic orbits are known triespond to energy levels in
the semiclassical limit. This correspondence iggilsy Gutzwiller's trace formu-
la,

1 [ T, i LT
- == P — —s—-il—
; E-E h perio%orbitsZSinh(a /3 xexp|:h > 2} ( 128)

whereT, is the period of a classical orb8,is the action integral along it, / is
the Maslov index, anda is determined from the stability of the orbit.
According to this formula, the Fourier transfornoatiof the level density is
expected to have peaks at each length of the periobit with a height

corresponding to the stability of it [8].

- The second reason is the existencescdr eigenfunctions [9,10]. This
clearly shows that each eigenstate can Beperpositionof a few classical

periodic orbits. We expect that eigenstates carchmsracterized by classical
periodic orbits for chaotic systems in place of for integrable systems.

- The third reason is that, in fully chaotic syste periodic orbits densely
exist in phase space because of the ergodicityhodigh they are isolated,
they can play a role in coupling quantum statesbse of the finitd.

Deformed Microcavity (DMC)

Besides advantage properties to investigate theotichasystem similar a
microcavity as compact size, high Q-factor, ..aod@kd microcavity also has

- Directional emission.
- High - Pumping efficiency (no resonant case)

- Chaotic ray dynamic (basis of wave chaos)
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We have chose the liquid micro jet DMC is a toalstudying ray and wave chao
s. The properties of micro cavity highly dependtlom degree of deformatiorf o

ne can tune the deformation of a micro cavity framperfect circle to a final defor
med form continuously, one can follow the evolutadrmodes and thus can easily
identify the origin and mode numbers of observeddes of DMC. Such
identification allows us to perform direct comigan with wave calculation and
helps us obtain better understanding on the commedietween the mode
distribution, cavity quality factors and outputeditionality of these modes, and
the aforementioned chaotic ray dynamics.
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Figure 1.9 Directional and Chaotic ray dynamic in some micawity.[16]

Actually, we can control of the degree of deformmatand thus we can follow a
mode evolution continuously. While the Directionlasing emission is different
andQ -values are tunable by the degree of deformation.

Quadruple micro cavity (QMC)
The boundary is parameterized in polar coordmate

r (o) =;(1+£cos ) (1.29)

N1+£2/2

The area of this domain s All other deformations will have as their dominant
multimode component this term, and we can therafigsesthe strength of the
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guadruple part as a measure of the deformation &llatvs a comparison
between different shapes

The output directionality observed from deformedcnmi cavities has been
explained either by ray dynamics based on chaawyhé], or by the nature of

modes obtained from Maxwell’'s wave equations. Adeyuof each approach
depends on several factors, but most importantlyhensize of micro cavity with

respect to the wavelength of interest or the siaemeter nkr, where n is the
refractive index of the cavity medium,-khe wave vector with the wavelength

and r the representative radius of the cavity.

Quadrupole cavity

Figure 1.10.A quadruple deformed microcauvity.

Its component is more than 971%{

Since the damping constant of some DMC, we see dftat 39us (period of
oscillation) only quadruple shape remains: No mévaiwints are characteristics
of only a quadruple.

r =a,(1+7,c0s 2+ @, Y1, cosP+@, ¥n, coséf ¢, HII (1.30)
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2. Experiment
In principle

We have developed a technique for realizing a tiweedsional quadruple micro
cavity with its deformation variable from 0% to 20 continuously using a liquid
jet ejected from noncircular orifice. With this ketque, we investigated the far
field evolution depending on deformation paramétamn regularity to chaos.

The Liquid jet micro cavity is the most suitalile studyfully chaotic systems
because of the following three reasons

- Ultra high Q-value, small size and clear bounddrgpe is possibldue to the
smoothness of surface by surface tension.

- The degree of deformation is continuously tunable
- Itis easy to control the concentration of gaiatenial

The micro jet is excited by an argon-ion pump lese514 m. The pump laser is
focused with a cylindrical lens into a thin profilgith a thickness of 1(m in the

z direction so that a thin slab can be selected ta tveo-dimensional micro cavity
in the micro jet. The fluorescence emitted fromstheégion is collected by an
objective lens and delivered to a spectrometer witbharge-coupled-device
detector.

An DMC can be obtained from a horizontal crossieacbf a micro jet, which is
made of ethanah=1.361 doped with Rhodamine B dyes as gain madsculhe
cavity-modified fluorescence (CMF) or lasing ligfrom the QDM is collected by
an objective lens with a full collection angle®idegrees and focused on to an
entrance slit of a spectrometer.

LY
Ny W,
A
Spectro| i CW-Ar*
R v laser
L Optical
~._ fiber ="

T

Figure 2.1 Schematic of our experimental setup for measucangty mode
spectrum and single-mode far-field emission pattéra QDM.[11]
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The fabricating process of deformed orifices

The shape of the jet column can be approximatekarcylindrical coordinates by
the following time independent equation

=147, exp[_i si 2_7Tz+5] cos&) (2.1)

v,r vT

wherea is the mean radiug, is a deformation parametar,is the decay rat,
is the period of oscillation, anél is an initial phase of oscillation. The jet velgci
V. is assumed to be uniform across the entire jet

LS

= D3
D2

= D1 ) —=p

Heat Press
Ligquid
FESErOIr

Figure 2.2 a. Model for the deformed microjet column.
b. Fabrication procedaf@ noncircular orifice.
The side view shows tihatinner walls are inclined. [11,16]

From Eq.1.29, the micro jet boundary at the nozz(eis
r(6,z,) = a[1+(—)”}/7n cos®d (2.2)

The tip of a Pyrex tube is placed vertically in tenter of a Nichrome heating coil.
The bottom of the orifices are melted, narrowed iastined, resembling the letter
“V,”. The tip are pressed with a tweezers to dedgieéormation. The end of cut
back and polish them to control their dimens®radient about vertical axis play a
critical role in tuning of deformation

A noncircular orifice induces a micro jet to formstationary tidal column as
depicted in Fig.2.2 — 2-5, the micro jet surfacedmees well approximated by Eg.
2.2 demonstrate a horizontal cross section ofaajet or antinodes planeszt
as Dn(n=1,2,3,...).We made orifices a different deforiorat
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Obtain a deformed microcavity

Due to surface tension, the liquid jet ejected friv@ deformed orifice exhibits
shape oscillation as it is launched upward.

0000000000

Figure 2.3.0btain the shape oscillation from the deformedrogavity
The left view is a real imageaafioncircular orifice [16]

A two-dimensional asymmetric resonant cavities (AREpecifically a quadruple
deformed micro cavity (QDM), is obtained by selegticross- sectional planes
located at the extremm’s (n =-1,0,1,2,...) in Fig.2.2 (a) of the ampliaud
oscillation, where the cavity boundary is givenHiy 2.2

The degree of possible three-dimensional (3D) effee to a finite thickness of
the region to be used in experiment around theserssctional plane, which is
about 10um, can be estimated in the following wayder our experimental
conditions to be described below, a typical valtig,T is 280um, which is much
larger than the mean radiasof 15um. The possible variation in the cavity size
over the 10um region in thedirection is then estimated to be less than 0.1% or
0.02 um in diameter, and therefore the 3D effentlmsafely neglected.
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Control the degree of deformation

In principle, when has been ejection pressure anaraglial velocity of jet change
and correspondingly initial degree of deformatibarge

From o candeformation tuning at antinodes planegly jet ejection pressurgo

r example, with an ejection pressure increased.tbars, we obtained a new set
of QDM’s with deformations of 29,8 % (D1), 20,4 ®2), 14,5 % (D3), 10,6 %
(D4), 7,5 % (D5),5,0 %(D6) etc., increased from42%; (D1), 16,9 % (D2), 12,6
% (D3), 8,5 %(D4), 5,5 % (D5), 4,3 % (D6), etcla bars. (Fig. 2.4)
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Figure 2.4 Variation of deformation parameter according todfeztion
pressure of the jet at D2—-D5 positiorgy.[1

The pinching of the nozzle in one direction in tladrication process has
introduced different inner wall slopes, and the#éent wall slopes in turn
induce different initial radial velocities, whichakes it possible to tune the cavity
deformation. We then obtain the following resultoshng that the seed
deformation can be controlled by the jet ejectielocity

| (KTY
Mo =\ * > Vv, (2.3)

Due to the gradient about vertical axis, jet flomt with initial radial velocity and
the initial deformation increase by initial radvalocity.
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Side view of nozzle tip

Analogy with spring motion

agy . X

Figure 2.5.Principle schematic of Controlling the degree eficdmation [16]

The jet ejection velocity is easily controlled thetejection pressure. It is noted
that the oscillation of the quadruple deformatitong thez direction is analogous
to a damped harmonic oscillator with a nonzero ting velocity. The
dependence af and consequently the amplitude of deformatiorillaton on the
jet velocity v, are illustrated in Fig.2.5. In addition, the cdmition due to the
damping in the initial radial velocity is much shealthan that of the harmonic
oscillation.
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Measure the degree of deformation from diffractionpattern

The degree of deformation of QDM’s can be deterahifrem their diffraction
patterns made by an incident Ar laser. The defdongbarameters measured by
the diffraction technique as in Figure 2.6. Thegrdes of deformation of QDM’s
are found to be :

29,8% (D1), 20 % (D2), 14,5 % (D3), 10,6 % (D4 % (D5), 5.0 %(D6), etc.
underl.8 barsof ejection pressure.
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Figure 2.6. Measure the degree of deformation from diffractiattern [16]
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Obtain the evolution of lasing directionality

One of the behaviors to reach studyirg dlnantum states is to consider
them at the boundary of classical mechanics wheteaapplicability of classical
mechanics theory. Therefore the principle to baildieformed micro cavity for
research quantum properties in chaos medium tadeliecthe interplay between
wave and particle natures of light.

The output directionality observed fro deformed nmicavities has been explained
either by ray dynamics based on chaos theory [1hyothe nature of modes
obtained from Maxwell’s wave equations. Adequacyeaich approach depends on
several factors, but most importantly on the sikenicro cavity with respect to
the wavelength of interest or the  size param@tar wheren is the refractive
index of the cavity medium, k=r2.- the wave vector with the wavelength aad
the representative radius of the cavity. Sinceoffieesonance pumping efficiency
for a QDM depends on pumping angle [12], the puaget beam is delivered
through an optical fiber with its exit end mounteal the rotatable stage with a
fixed angle of 45 with respect to the major axis of QDM when outppéctrum
and directionality are measured. The cavity-modiflaorescence (CMF)or lasing
light from the QDM is collected by an objective $ewith a full collection angle o
f 5 degrees and focused on to an entrance slispEatrometer. A polarizer pl
aced in front of the slit selects only the paation component parallel to the QD
M column. The emission spectrum is then measured fixed angle? of the  r
otation stagéFigure 2.7)

The size parametetka have a important role to choose the regime wheresdte
formation in the cavity. In other words, let’s finehat its value corresponding to
an interesting regime where wave and patrticle eatfrlight may coexis.

With nka large , the fact that the free spectral range SR mode in such large
cavities is not much larger than the line widthsrafividual modes of relatively
low cavity quality factor Q, associated with thesetved output directionality.
Actually, properly chosen size parameta~200due to limitation in humerical
computation and due evidently the various modesofesl in this case, to
elucidate the interplay between wave and partiatanes of light in DMC [11].

A hint comes from the observation that the farefiemission pattern obtained
from ray dynamics in classical limit for the QDMssnilar to those from the wave
calculation and the experiment. For an open systeng time ray dynamics in

chaotic region are predominantly determirdthe so-called unstable manifo
lds [2, 3].

As the deformation is increased gradually, thisasgital regularity begins to be
broken following the Kolmogorov-Arnold-Moser (KAMjcenario in phase space.
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The emission pattern also experiences a dramaiogehfrom isotropic emission
to collimated tangential emission at high-curvafooets on the surface. When the
deformation is further increased, even KAM tori &reken and the internal ray
dynamics becomes more chaotic.

These universal directionality of high Q modes banexplained by unexpected
manifestation of particle nature of light or rdpw in classical chaos in the
formation of quasi-bound states in quantum chaosesponding to the wave
nature of light.

By background luminescence, mostly due to bulk fdscence of the cavity
medium, can be discriminated. The resulting singlade far-field emission
pattern is shown in Fig.2.Ta comparison, previously reported far-field patser
for deformed micro cavities of nka.0® [3 ] were measure without any resolution
on individual modes and thus they correspond totimatle far-field emission
patterns.
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Figure 2.7. The emission directionalities seen in the faldfdistribution show the
transition of mode dynamics from regularity (0%Yxrtwmos (22%).
Emission properties : at 0 % : Isotropic emission,

at 5 % : Tangahémission at high curvature,

at 16 % : Highliyectional emission [16]

Since rays escapes from an open cavity befoahireg complete lyer geodic limi
t, ray dynamics is usually restricted in limitduage space and thus follows a few
dominant unstable manifolds.
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We observed the evolution of lasing directionaliym deformation parameter 0%
(regularity) to 22% (chaos) in Figure 2.7. Thisuleias compared with calculated
wave function in figure 2.8. They are representssl ¢correspondence with each
other.

Comparing with
calculated wave function

nka~ 35

(n=refractive index, k=217A, a = radius) 7

Figure 2.8.Results from calculated wave function witka ~ 35[16]

Conclusion

Above experiment results have elaigd basics of quantum chaos theory in
Session |. Clearly, the deformed micro cavity isefiicient tool to study quantum
chaos phenomena, which essential high complicatkd. fabricating of deformed
orifices is successful and its parameters chosgmoppately obtained interesting
results. In the future we hope from that DMC wibtain complicated spectra for
avoided crossing effect as well as its defereterasting effects.
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